

CDF Research Program

Ray Culbertson FNAL

♦ Detector and Operations

Physics Highlights

♦ Preparing for the Future

CDF Collaboration

North America

- 34 institutions,
- FNAL, ANL and LBNL

Europe

19 institutions

Asia

• 8 institutions

As the Cdf Collaboration

- 12 Countries
- 61 institutions
- 620 authors

CDF Dataset

Data to this shutdown:

- ◆ ~1.6 fb delivered
- $\sim 1.3 \text{ fb}^{-1}$ on tape
- the full dataset is reconstructed and available in common ntuples now

dataset has doubled each of the last 3 years

Data-taking Efficiency

Efficiency ~85% total

- ◆ 5% Trigger deadtime
- 5% beam conditions
- ♦ 5% other

Predominately stable running for years

Detector Upgrades

- ♦ Timing for EM calorimeter towers *fully operational*
- ♦ Central preshower *fully operational*
- ♦ Level 2 trigger *fully operational*
- ♦ Central Tracker TDC's *fully operational*
- ♦ Silicon Trigger *fully operational*
- ♦ Event Builder *fully operational*
- ♦ Level 3 computing upgrade *fully operational*
- ◆ 3-D tracking in trigger *hardware complete*, *commissioning*
- ◆ Data Logger in progress

Final configuration essentially in place

CDF Computing

Data Processing- Reconstruction

- First pass for beamlines and calibration ntuples: ~few days
- 8 weeks for calibration and final production will be even faster
- Can process 25M events per day (we take 8M max per day)
- Common ntuples now produced on the farms
- In the next year, will be merged with Analysis farms
- Final reconstruction software version almost finished

Data Processing - Analysis

- 8.2 THz available
 - 5.8 on-site (30% from non-FNAL funds)
 - 2.4 off-site (mostly for Monte Carlo)
- Scratch (ntuple) space: changing disk servers to persistent dCache

Reconstruction in good shape Offline resources should be adequate

FNAL Group on CDF

- 64 FNAL authors
 - 42 from Particle Physics Division
 - 10 from Computing division
 - 7 from Technical Division
 - 5 from Accelerator Divsion
- ♦ This includes 10 post-docs
- ♦ Many FNAL personnel contribute mostly technical expertise
- ♦ Many FNAL personnel have non-CDF obligations
- ♦ About 30/65 contribute to CDF analysis

continued success in attracting great post-docs

FNAL Group Leadership

Over the past 2 years, these authors have...

- ♦ held 13 leadership positions in analysis
- ♦ held ~30 leadership positions in online and offline operations

Including:

- current Operations Head (P. Lukens)
- incoming Operations Head (P. Wilson)
- incoming CDF Physics Coordinator (D. Glenzinski)
- CDF Spokesperson (R. Roser)

FNAL Operations Responsibilities

Line Responsibility- Operations

- ◆ CDF Safety no injuries since 10/2003
- Flammable gases, cryogenics, solenoid, etc.
- All training related to collision hall access

Line Responsibility - Computing

- Long term data storage
- Offline software and re-processing

CDF MOU Responsibility for:

- Central Outer Tracker Chamber
- Silicon Vertex Detector
- Data Acquisition
- Level 2 Trigger

Physics Highlights

FNAL RA's

Physics

- Fermi group loosely organized in 4 analysis groups
- Incoming RA's have options for projects waiting for them
- All have mentors, and report regularly to FNAL physics meeting

Recent RA Track record

- AP Colijn (Faculty U. Amsterdam)
- M. Martinez (Faculty U. Barcelona)
- M. Bishai (BNL hired with tenure)
- T. Nelson (SLAC hired with tenure)
- R. Erbacher (Faculty UC Davis) recent OJI recipient!
- P. Merkel (Res. Sci. Purdue U.)
- J. Thom (Faculty Cornell)

Fermilab RA's do physics and succeed

CDF Physics Publications

Physics Publications

♦ 2003 : 3

♦ 2004 : 4

♦ 2005 : 36

◆ 2006 : 4 so far,(on track for 30-40)

Plus:

- 9 accepted
- ♦ 18 submitted
- ♦ 16 drafts under review

Fermilab group has been very active, counted as authors on ~30% of these papers.

And 31 NIM papers...

CDF Physics Bests and Firsts

A partial list of things CDF has done first or best

- Best top mass
- Best top cross section
- Best limits on single top
- Best limits on $t \rightarrow H^+$
- Best Bs mixing measurement
- First Bc \rightarrow J/ $\Psi\pi$
- Best Bc lifetime
- Best B cross section
- First lifetime for X(3872)
- ◆ Best ppbar → D cross section

- Best limits on some Z'
- Best direct limit on W'
- Best Leptoquark $\rightarrow \tau$ limits
- Best limits on squark and gluino
- First Z' search in di-τ channel
- Best Wγ and Zγ cross sections
- Best WW cross section
- Best W width and asymmetry
- Highest-Et b-jet cross section
- First obs. of exclusive e^+e^- and $\gamma\gamma$

Overall, 72 best's and first's so far!!

Measurement of Bs Oscillations

- \bullet Bs \leftrightarrow \bar{B} s
- crucial test of unitarity CKM triangle closure

- infer production flavor from opposite and same-sign tags
- measure proper time of decay
- determine decay flavor from decay products

Bs Oscillations - Sample

Hadronic Sample

• From SVT Trigger:

$$B_s \rightarrow D_s \pi, D_s 3\pi$$

 $D_s \rightarrow \phi \pi, K^*K, 3\pi$

Most important for high frequency

Semileptonic Sample

- From lepton triggers $B_s \rightarrow D_s \mu \nu, D_s e \nu$ $D_s \rightarrow \phi \pi, K^*K, 3\pi$
- Correct for neutrino p_T
- Higher stats, lower proper time resolution

Bs Oscillations - Results

• Scan each frequency, fit for amplitude

Search for $B_{s,d} \rightarrow \mu^+ \mu^-$ (C. Lin, D. Glenzinski, et al.)

• In the Standard model, FCNC B $\rightarrow \mu\mu$ is heavily suppressed

- Branching ratio = $3.9 \pm 0.9 \times 10^{-9}$ in the SM
- And will be enhanced if there is new physics:

Search for $B_{s,d} \rightarrow \mu^+ \mu^-$ (C. Lin, D. Glenzinski, et al.)

Results

 Consistent with background from combinatorics and B→hh

Limits

- BR(B_d $\to \mu\mu$) < 1.0 x10-7
- BR(B_s $\rightarrow \mu\mu$) < 3.0 x10-8
- Some SO10 models excluded, MSSM high-tanβ
 parameter space limited

World's best limit

◆ Likelihood formed from lifetime, pointback, isolation

$B_s \rightarrow \Psi(2s)\phi$

Sample

- $\Psi(2s) \rightarrow \mu\mu$
- $\Psi(2s) \rightarrow J/\Psi \pi \pi$
- Require high-pt, displaced vertex

BR

- Bs $\rightarrow \Psi(2s)\phi$ / Bs $\rightarrow J/\Psi\phi = 0.52 \pm 0.13_{stat} \pm 0.06_{BR} \pm 0.04_{sys}$
- Similar to other $\Psi(2s) / J/\Psi$

World's first observation

(T. Liu, *et al*.)

B_c Mass

(W. Wester, P. Lukens, S. Tkacyzk)

Sample

- $J/\Psi\pi$ mode
- 38.9 signal over
 26.1 background, > 6σ
- Mass:

6275.2 ±4.3 ±2.3 MeV

• Reasonable agreement with

recent lattice calculations

World's best measurement

Top Quark Mass (D. Glenzinski, D. Ambrose,

(D. Glenzinski, D. Ambrose, G. Velev, G. Chlachidze, *et al.*)

- t t̄→WbWb,each W→jj or lv
- ◆Best measurement from lepton plus jets
- ◆ Leading systematic is jet energy scale, which is now set by the W→jj peak in the top events!

 Break down data by sub-samples, different signal/noise

Top Quark Mass

◆ Higgs constraint implies lighterwhere we are more sensitive!

World's best measurements

Top Quark Mass - Future

• Hope to end up with CDF $\sigma = 1.5 \text{ GeV } (\sim 1\%)$ by the end of Run II

Already exceeded pre-Run II projections!

Search for SUSY Trileptons

- Final state is 3 leptons and missing Et
- This is μ +2leptons, also search
- 2 like-sign leptons
- ee+track (tau)

Process	μμ Channel	μ+CEM e Channel	$\mu + Plug - e$ Channel
$DY+\gamma$	0.22 ± 0.11	0.10 ± 0.04	0.04 ± 0.04
$WW-WZ\gamma^*-W\gamma$	0.20 ± 0.02	0.19 ± 0.02	0.25 ± 0.03
${\sf t} ar t$	0.014 ± 0.006	0.009 ± 0.005	0.007 ± 0.004
DY+fake leptons	0.20 ± 0.10	0.11 ± 0.55	0.06 ± 0.03
Total background	$0.64 \pm 0.11 \pm 0.14$	$0.42 \pm 0.05 \pm 0.08$	$0.36 \pm 0.05 \pm 0.07$
SUSY signal	$1.6 \pm 0.1 \pm 0.2$	$0.83 \pm 0.06 \pm 0.10$	$0.20 \pm 0.02 \pm 0.02$

Search for LED

(K. Burkett, E. James, A. Yagil, et al.)

Large Extra Dimensions

- ◆ ADD Model: produce graviton + one jet
- graviton escapes into another dimension (MET)

Analysis

- cleanup of mismeasurements and cosmic ray interactions is important
- Remove $W \rightarrow lv$
- Require:
 - one jet, Et>150GeV
 - no other jets
 - MEt>120 GeV

Search for LED

(K. Burkett, E. James, A. Yagil, et al.)

Limits

- ◆ K-factor =1.3
- Limits depend on the number of large extra dimensions
- ◆ Effective Planck mass scale > 0.83 to 1.16 TeV

Comparison to LEP and D0

Search for $\gamma\gamma + X$

Signature-based

 No model examined (though several models can appear in this final state) spend time on data!

Base Sample

- 2 central photons
- $E_T > 13 \text{ GeV}$

X = third photon

- 1 fb⁻¹
- Backgrounds:

fake γ 1.2 \pm 0.6

triphoton 0.7 ± 0.1

total 1.9 ± 0.6

Observed: 4

(E. Yu, S. Pronko, RLC)

Search for $\gamma\gamma + X$

$X = e \text{ or } \mu$

• Require standard high-pt lepton

Electron

W,Z $\gamma\gamma$ 0.65 \pm 0.5

fakes 3.8 ± 0.8

total 4.5 ± 0.8

Observed: 2

Muon

W,Z $\gamma\gamma$ 0.3 \pm 0.03

fakes 0.1 ± 0.1

total 0.47 ± 0.12

Observed: 0

(E. Yu, S. Pronko, RLC)

Exclusive e⁺e⁻ Production

(M. Albrow, et al.)

Process

• QED: proton acts like a charge with EM form factor:

- Determine exclusivity by the lack of energy in cal and hits in forward counters
- find 16 events, 2.1 bg
- Results in good agreement:

 σ meas 1.6±0.5±0.3 pb

LPAIR MC 1.711 pb

first observation at hadron collider

Exclusive $\gamma\gamma$ Production (M. Albrow, et al.)

Sample

• QCD process:

- Techniques the same as e⁺e⁻
- 3 events, ~0 bg expected
- Cross Section:

 $0.14\pm0.14\pm0.03$ pb σ meas ExHuME 0.04-0.20 pb

• This process helps predict diffractive Higgs production first evidence at hadron collider

(F. Chlebana et al.)

Sample

- ◆ 1 fb-1
- Central: η <0.7 only
- Corrected for UE and hadronization
- Largest uncertainties from jet energy scale
- covers 8+ ordersof magnitude!

Jet Cross Section

(F. Chlebana et al.)

Comparison

- Unfold to parton level
- Compare to NLO pQCD (EKS program)
- μ =Pt(jet)/2
- ◆ CTEQ6.1M PDF

Conclude

- Excellent agreement
- Strong test of pQCD
- Sensitive to αs running
- Sensitive to new physics

Fermilab Group - Ongoing Physics

The Fermilab CDF physicists are also performing these world-class investigations, and others...

♦]	Improved	ltop	mass
------------	----------	------	------

- W helicity in top decays
- Top spin correlations
- Bs Oscillations
- Double Charm Correlation
- $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in J/ $\Psi\gamma$
- Bc Lifetime
- Search for high-PT dimuons (SUSY)
- Search for dimuon mass peak (Z')
- Long-lived Massive Particles

- (S. Golossanov)
- (R. Eusebi)
- (K. Anikeev)
- (B. Reisert)
- (P. Lukens)
- (T. Miao)
- (J. Nachtman)
- (J. Nachtman)
- (R. Snider)

We are ready for several years of high-luminosity running...

Long-term Success: COT

- The Central Outer Tracker is critical to virtually all physics
- In Spring 2004 aging clearly observed due to hydrocarbons
- ◆ Adding O₂ to the Ar-Ethane gas fixed it
- gain vs run is now very stable

No further problems, OK for 8fb-1

Long-term Success: SVX

- Usable fraction is 90% and stable
- Silicon trigger still 96% coverage
- Steps to mitigate radiation damage are being implemented
- Layer 0 approaching inversion

Stable operations
Some degradation due to radiation, as predicted,
but all layers should keep working until 8fb⁻¹

Long-term Success: Reconstruction

More crossings

- Need to plan for 3×10^{30} at start of store
 - that's 10 interactions per crossing
 - but it decays quickly, 5 more typical

Algorithm Performance

- Dedicated studies for tracking, lepton ID, B-tagging, MET resolution, jet corrections
- Use MC
 - overlay minbias events to simluate L = 3E30
- Use data
 - use bins of N Vertices as level arm to project
 - check with data/MC comparison

CDF preparations are well underway, and we expect no show-stoppers

Long-term Success - Triggering

Stay on top of it

- ♦ High-Lumi Trigger Task Force formed in 2005
- ◆ Subject of ongoing intensive work

Trigger Table

- ♦ High-PT occupies 50% of bandwidth at 3E32
 - remainder is calibration and backup triggers
- ♦ B-physics dynamically enabled ~1.5E32

Size of the Collaboration

- In 2004, HEPAP commissioned a survey to evaluate HEP resources *vs* the proposed physics program
- Results showed a significant gap between the demand for physicists and their availability
- Fermilab established a collider experiment task force to perform a bottoms up analysis of the resources available to each experiment and the requirements to operate (detector, computing and physics).
- Conclusions
 - CDF and D0 have the manpower needed through 2007
 - CDF and D0 may require small incremental help in 08-09
 - Working with the lab to address these potential shortfalls

Conclusions

- ◆ Detector is running well
- ◆ CDF is publishing physics results at a tremendous pace
- ◆ The collaboration is strong and dedicated
- ♦ Fermilab physicists continue to take on leading roles in all aspects of the experiment
- ♦ We are prepared to run for several more years at record luminosities